
IET
do

www.ietdl.org
Published in IET Communications
Received on 29th August 2008
Revised on 30th January 2009
doi: 10.1049/iet-com.2008.0503

ISSN 1751-8628

Application of complex-network theories to
the design of short-length low-density-parity-
check codes
X. Zheng1 F.C.M. Lau1 C.K. Tse1 Y. He2 S. Hau1

1Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong
2Department of Communication Engineering, College of Information Engineering, Shenzhen University, People’s Republic of
China
E-mail: encmlau@polyu.edu.hk

Abstract: Study of complex networks has been conducted across many fields of science, including computer
networks, biological networks and social networks. Characteristics of different types of complex networks such
as random networks, regular-coupled networks, small-world networks and scale-free networks have been
discovered by researchers. Application of such network properties to solve engineering problems, however, is
still at the infancy stage. In this study, we make one of the first attempts in applying complex network
theories to communications engineering. In particular, inspired by the shortest-average-path-length property
of scale-free networks, we design short-length low-density-parity-check (LDPC) codes with an aim to
shortening the average distance between any two variable nodes. We will also compare the error
performance, both theoretically and by simulations, of the proposed codes with those of other well-known
LDPC codes.
1 Introduction
In recent years, complex networks have been studied across
many fields of science, including computer networks,
biological networks, social networks, power networks and
telephone call networks [1–6]. Synchronisation and
stability of different complex dynamical networks have also
been gaining much research interest in the engineering
discipline [7–11].

A typical complex network is composed of nodes together
with the connections (links) between them [12, 13]. For
example, in an acquaintance network, each individual
person is represented by a node and a connection is
established between two nodes if the corresponding
individuals are acquaintances (such as relatives, friends and
colleagues) of each other. Suppose the network contains N
people. We can denote the topology of the acquaintance
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network by a connection matrix R given by

R ¼

R1,1 R1,2 � � � R1,N

R2,1 R2,2 � � � R2,N

..

. ..
. . .

. ..
.

RN ,1 RN ,2 � � � RN ,N

2
6664

3
7775 (1)

where

Rij ¼
1 if Individual i is an acquaintance of Individual j
0 otherwise:

�

(2)

Moreover, the connection matrix has the following
properties.

1. Rii ¼ 0 because Individual i is not regarded as an
acquaintance of himself.
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2. Rij ¼ Rji because either the ith and jth individuals are or
are not acquaintances of each other.

3. The sum of elements in the ith row or column gives the
total number of acquaintances for the ith individual
(denoted by ni), i.e.

ni ¼
XN

j¼1

Rij ¼
XN

j¼1

Rji (3)

It is also called the degree of the ith node.

4. The average sum of elements in each row (or column)
gives the average number of acquaintances of an individual
in the network (denoted by n), i.e.

n ¼
1

N

XN

i¼1

XN

j¼1

Rij (4)

5. If the total number of acquaintances for the ith individual
equals n for i ¼ 1, 2, . . . , N , the network is called a uniform
complex network. Otherwise, the complex network is non-
uniform.

Furthermore, the distance between two nodes in a network is
defined as the number of edges along the shortest path
connecting them. The average path length (APL) of the
whole network is then the mean distance between any two
nodes, i.e. averaging the distance over all pairs of nodes.

There are four well-known and much studied classes of
complex networks: random network, regular lattice, small-
world network and scale-free network [12, 13]. Consider a
network consisting of N nodes. A random network is
constructed when an edge is added to each pair of nodes
with a certain probability. In a random network, the
APL between nodes is proportional to log(N ) while the
degree of the nodes follows a Poisson distribution. To
construct a regular lattice, the N nodes are first spaced
equally on a circle and each of the nodes is then connected
to a given number of adjacent nodes. The APL of a regular
lattice is relatively large and becomes infinite as N
approaches infinity. However, most of the real-world
networks are neither entirely regular nor entirely random.
Suppose we start with a regular lattice with N nodes and
with a probability p, we rewire each of the links randomly.
Due to the rewiring process, the APL of the network
becomes shorter [proportional to log(N )] compared with
that of the lattice. Hence, we end up with a ‘small-world’
network because the average distance between the nodes are
‘smaller’ [1]. The probability distribution of the node
degrees of a small-world network is determined by the
rewiring probability p. In the extreme cases of p ¼ 0 and
p ¼ 1, a regular lattice and a random network are formed,
respectively.
70
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A recent significant discovery in the complex network
theory is that some complex networks, such as the Internet
and the worldwide web, have their node degrees following
power-law distributions, i.e.

Pr(ni) ¼ An�gi (5)

where Pr(ni) denotes the probability of a randomly selected
node having a degree ni, g is the characteristic exponent
and A is the normalising coefficient. Such kind of
networks are called scale-free networks [2]. Fig. 1 plots the
probability distribution of ni of a scale-free network.
From this graph, we can observe that the majority of the
nodes have a few connections, whereas a small number of
nodes (sometimes referred to as super nodes) have a large
number of connections. Fig. 2 illustrates another scale-
free network with 100 nodes. Note that the five super
nodes (represented by nodes 1–5) make connections to
most of the nodes. Compared with regular-coupled
networks, small-world networks and random networks,
scale-free networks of the same size (number of nodes)
and with the same number of connections are found to
accomplish the shortest APL [14]. Whereas for the same
APL, among the aforementioned networks, complex
networks with scale-free property have the smallest
number of connections. It has also been shown that when
the value of the characteristic exponent, i.e. g, lies
between 2 and 3, the APL of scale-free networks is
O( log(log(N ))) [14].

In this paper, we exploit the shortest-APL property of scale-
free networks and apply it to the design of short-length low-
density-parity-check LDPC codes. Specifically, we will
propose constructing short-length LDPC codes with
variable-node degrees following power-law distributions.
Here, we refer such LDPC codes to as scale-free LDPC
(SF-LDPC) codes. We will compare the achievable error

Figure 1 Power-law probability distribution. n̄ ¼ 5 and
g ¼ 2.1.
IET Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
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Figure 2 Scale-free user network with 100 nodes. n̄ = 2.9
performance (threshold) and the complexity (in terms of
average number of node degrees) between the proposed
short-length SF-LDPC codes and other best-known LDPC
codes. Moreover, we will construct SF-LDPC codes of
length 2016, 1008 and 504 and simulate their error
performance under an additive white Gaussian noise
(AWGN) channel environment. Finally, we will compare
the error rates and the average convergence time between the
constructed SF-LDPC codes and some other best-known
LDPC codes.

2 Density evolution and LDPC
codes
In the bipartite graph representation of LDPC codes, the
code bits and the parity-check equations are denoted by
two kinds of nodes, namely variable nodes and check
nodes, respectively. Also, the variable nodes and check
nodes are connected by edges, which are governed by the
entries in the sparse parity-check matrix. For each node,
the number of edges connected is called the ‘degree’ of
the node. If all nodes of the same type have the same
degree, the LDPC codes are regular; otherwise, the codes
are irregular. For a given distribution pair (l, r) of an
T Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
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LDPC ensemble [15],

l(x) :¼
Xdv

k¼2

lkxk�1 (6)

and

r(x) :¼
Xdc

k¼2

rkxk�1 (7)

specify, respectively, the variable-node and check-node
degree distributions. Also, dv is the maximum variable-
node degree and dc denotes the maximum check-node
degree. Moreover, the coefficients lk and rk, respectively,
represent the fraction of edges connected to the variable
and check nodes with degree k.

Assume that the parity-check matrix has a full rank. Based
on the degree distributions, the code rate of the system,
denoted by Rcode, can be obtained using

Rcode ¼ 1�

ð1

0

r(x) dx=

ð1

0

l(x) dx: (8)
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Fig. 3a shows an example of a (10, 5) irregular LDPC code
where 10 and 5 denote the number of variable nodes and
check nodes, respectively. In this case, the code rate can
also be derived using Rcode ¼ (10� 5)=10 ¼ 0:5. In other
words, for a finite-length LDPC code, the code rate can be
determined directly from

Rcode ¼ 1� L=N (9)

where L and N represent, respectively, the number of check
nodes and the number of variable nodes.

In the design of LDPC codes, the error performance of the
codes has been one of the major considerations. Suppose an
LDPC code is defined with its degree distributions of the
variable nodes and the check nodes. Moreover, the most
common algorithm, namely the sum-product iterative
decoding algorithm or the belief propagation (BP)
algorithm [16], is used in the decoder. In the decoding
process, updated messages will be passed forward and
backward between the variable nodes and the check nodes
during each iteration. Under an AWGN channel with
noise power s2, the best achievable performance of the code
will be determined by a certain ‘threshold’, which can be
regarded as the maximum noise standard deviation s�

below which error-free communication can always be
achieved. Hence, the larger the threshold value, the better
theoretical performance the code achieves.

Figure 3 (10, 5) LDPC code

a Bipartite graph representation
b Complex network formed by removing the check nodes
72
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To evaluate the threshold value, a powerful tool called
‘density evolution (DE)’ has been proposed [16, 17].
Though a complex algorithm, DE can compute the exact
threshold of a code with arbitrarily small error probability.
In contrast, other popular evaluation tools, including
‘Gaussian approximate density evolution’ (GA-DE) [18],
‘extrinsic information transfer’ (EXIT) [19] and ‘generalised
extrinsic information transfer’ (GEXIT) [20], provide
simpler methods to compute the threshold at the expense
of accuracy.

With the use of the aforementioned evaluation tools,
researchers have been able to optimise the achievable error
performance of the LDPC codes under different channel
conditions by varying the parameters of the codes,
including variable-node distribution, check-node degree
distribution, maximum variable-node degree, maximum
check-node degree and code rate (a function of node
degree distributions) [16, 17, 19]. However, the best
achievable error performance can only be accomplished
under two conditions – infinite code length and infinite
number of iterations performed by the decoder – and
neither requirement can be fulfiled in practice. In reality,
short-length (less than several thousands) LDPC codes will
find a lot more applications, but their error performance
may deviate significantly from the best values. So, other
degree distributions, compared with those optimised by the
aforementioned tools, may possibly offer a better
performance.

3 SF-LDPC codes
Recall that as the iterative decoding process proceeds, the
information generated by each variable node will eventually
be conveyed to all other variable nodes via the check nodes.
To visualise the flow of messages among the variable
nodes, we remove the check nodes and construct a complex
network using only the variable nodes. Moreover, two
variable nodes vi and vj are connected in the
complex network only if they are connected to the same
check node in the original bipartite graph. Fig. 3b shows
the complex network formed based on the LDPC code in
Fig. 3a.

For the complex network so formed, the APL corresponds
to the average number of iterations required for an updated
message from one variable node to eventually pass to
another variable node. Decreasing the APL will no doubt
accelerate the exchange of messages among the variable
nodes, thereby reducing the number of iterations the
decoding algorithm takes to converge. This is particularly
useful in the high SNR region where the decoder has a
much higher chance to converge. As scale-free networks
have been shown to provide a very short APL [14], it will
be an advantage if LDPC codes are designed in such a way
that the resultant complex network formed by the variable
nodes has a scale-free property.
IET Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
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One approach is to start with a complex network (like
Fig. 3b) with a power-law degree distribution and convert
it directly into a bipartite graph (like Fig. 3a) that
represents the LDPC code. However, the conversion task
is not a trivial one as it can be envisaged that the mapping
from the complex network to the bipartite graph is not
unique. An alternate way is to begin with a bipartite graph
and convert it into a complex network. The challenge
would then become ensuring that the complex network has
a scale-free property. It is because the variable nodes are
interconnected via the check nodes and hence it may not
be possible to determine the properties of the resultant
complex network when the check nodes are removed. To
resolve the issue, we apply a theorem in [21], which states
that if the degree distribution of one set of nodes in a
bipartite graph follows a power-law distribution, the
degree distribution of the unipartite graph (network)
formed when the other set of nodes is removed also
follows a power-law with the same exponent. In
other words, if we can construct LDPC codes such
that their variable-node degrees follow power-law
distributions, the complex networks formed by the variable
nodes alone (after removing the check nodes) will also
follow power-law distributions with the same exponent.
Consequently, the APL between the variable nodes will be
small which would enhance the convergence rate of the
LDPC decoder.

We denote the probability that a variable node has k
connections by Prl(k). To construct a SF-LDPC code, we
assign the fraction of variable nodes with degree k
according to a power-law function, i.e. Prl(k)/ k�g, where
g is the characteristic exponent for the variable-node
degree. Since

X
k

Prl (k) ¼ 1 (10)

the fraction of edges connecting to variable nodes with degree
k can be readily shown equal to

lk ¼
k1�g

Pdv
i¼2 i1�g

(11)

Then the variable-node degree distribution in (9) can be
expressed as

l(x) ¼
Xdv

k¼2

k1�g

Pdv
i¼2 i1�g

xk�1 (12)

In addition, the average variable-node degree, denoted by
kkvl, can be computed from

kkvl ¼
Pdv

k¼2 k1�g

Pdv
i¼2 i�g

(13)

As for the check nodes, their degree distributions are also
T Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
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found to affect the performance of the LDPC codes to
some extent. Moreover, it has been well known that the
degrees of the check nodes should be kept almost the same
in the design of good LDPC codes [16]. Here, we restrict
the check-node degrees to three consecutive integers, i.e.
dc � 2, dc � 1 and dc and that the check-node degrees are
taken to follow a Poisson distribution with parameter m.
The advantage of such a model is that there are only two
variables to manipulate – dc and m. Consolidating the
above conditions, the probability that a check node has
k [ {dc � 2, dc � 1, dc} connections, denoted by Prr(k),
equals

Prr (k) ¼
mke�m=k!Pdc

k0¼dc�2 mk0e�m=k0!
(14)

Then, the fraction of edges connecting to check nodes with
degree k equals

rk ¼
mke�m=(k� 1)!Pdc

j¼dc�2 m je�m=( j � 1)!
k [ {dc � 2, dc � 1, dc}

(15)

and the check-node degree distribution in (10) can be
rewritten as

r(x) ¼
Xdc

k¼dc�2

mke�m=(k� 1)!Pdc
j¼dc�2 m je�m=( j � 1)!

xk�1 (16)

Combining the results in (8), (12), (13) and (15), it can be
readily shown that for a given rate Rcode

kkvl
1� Rcode

¼

Pdc
k¼dc�2 mke�m=(k� 1)!Pdc

j¼dc�2 m je�m=j!

¼
(dc � 2)(dc � 1)dc þ (dc � 1)dcmþ dcm

2

(dc � 1)dc þ dcmþ m2

(17)

Since dc is an integer greater than 2, we can conclude that

dc � 2 ,
kkvl

1� Rcode

, dc (18)

and

dc ¼
kkvl

1� Rcode

� �
,

kkvl
1� Rcode

� �
þ 1 (19)

where xd e denotes the smallest integer larger than or equal to
x. When dc is selected, the corresponding m can also be found
using (17). Supposing dv ¼ 20 and Rcode ¼ 0:5, Table 1
shows the possible values of dc as g varies.
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4 Results and discussions
4.1 Achievable error performance
of SF-LDPC codes

In this section, we present the analytical performance and the
simulated results for SF-LDPC codes. First, we compare the
achievable error-correcting capability (threshold) between
SF-LDPC codes and other best-known LDPC codes [22].

Figure 4 Achievable error performance (threshold) s�

against g. Rcode ¼ 0.5 and dv ¼ 20

Table 1 Possible values of dc at different ranges of g.
dv ¼ 20 and Rcode ¼ 0.5

Range of g Possible values of dc

1.727–1.934 10,11

1.934–2.183 9,10

2.183–2.501 8,9

2.501–2.963 7,8

2.963–3.830 6,7
574
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We assume a code rate of 0.5 and an AWGN channel.
Suppose the maximum variable-node degree equals 20, i.e.
dv ¼ 20. We select a value for g, say g ¼ 2:0. Based on
(19) and (17), we can find the values of dc and m,
respectively. We then substitute the distributions of the
variable nodes and check nodes into the DE algorithm,
which can be treated as a black box here, and obtain the
achievable error performance s� of the SF-LDPC codes.
Fig. 4 plots the value of s� as g increases from 1.95 to
2.50. From the results, we observe that s� accomplishes a
maximum value of 0.945 at g ¼ 2:35 and dc ¼ 9. Note
that dc ¼ 8 and 10 are, respectively, valid only in the ranges
g [ [2:18, 2:50] and g [ [1:95, 2:18]. But dc ¼ 9 is valid
in the range g [ [1:95, 2:50] (see Table 1 for reference).

Using the same methodology, we can evaluate the best
achievable error performance (threshold) s� of the SF-
LDPC codes with code rate Rcode ¼ 0:5 under different
values of dv. In Table 2, we list the highest thresholds
achieved by SF-LDPC codes and the corresponding
parameters used, alongside with the thresholds of other
best-known LDPC codes [22]. It can be observed that in
all cases, the largest threshold values s� for the SF-LDPC
codes are comparable with those for other best-known
LDPC codes (less than 2% difference). But the average
number of connections for the SF-LDPC codes is
significantly smaller (12 to 15% reduction) compared to
those for other LDPC codes. In the following studies, all
the SF-LDPC codes will therefore be constructed based on
the parameters listed in Table 2.

4.2 Characteristics of short-length
SF-LDPC codes

Next, we form SF-LDPC codes of finite lengths using the
parameters listed in Table 2. We select two codes randomly
from the SF-LDPC code ensemble. The first one has a
block length of 1000 (i.e. number of variable nodes equals
1000) and a maximum variable-node degree of dv ¼ 15
whereas the other one has a block length of 10 000 and a
maximum variable-node degree of dv ¼ 20. Then, we
remove the check nodes and form complex networks with
the remaining variable nodes, like the one shown in
Table 2 Comparison of threshold value and average number of connections
between SF-LDPC codes and other best-known LDPC codes. Code rate Rcode ¼ 0.5

Common parameters Optimised
codes in [22]

SF-LDPC codes

dv s� kkvl g dc m s� kkvl

15 0.9622 4.0087 2.35 9 7.3545 0.9430 3.5117

20 0.9649 4.1638 2.35 9 7.8441 0.9449 3.7192

30 0.9690 4.4963 2.36 9 8.5609 0.9513 3.9723

50 0.9718 5.0765 2.35 9 9.4169 0.9535 4.3039
IET Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
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Fig. 3b. Fig. 5 shows the degree distributions of the complex
variable-node networks of the two randomly selected codes.
We observe that the degree distributions of the resultant
network do follow power-laws with characteristic
exponents equalling 2.35. Moreover, when the code
length becomes longer, the scale-free property gets more
prominent.

Figure 5 Degree distributions of the complex variable-node
networks of the two randomly selected codes

a Block length 1000 and maximum variable-node degree 15
b Block length 10000 and maximum variable-node degree 20

Table 3 Details of LDPC code types used in simulations

Abbreviation Type of code dv s� kkvl

DE10 DE-optimised
codes in [22]

10 0.9558 3.6631

DE15 DE-optimised
codes in [23]

15 0.9622 4.0087

SF20 SF-LDPC codes 20 0.9449 3.7192
T Commun., 2009, Vol. 3, Iss. 10, pp. 1569–1577
oi: 10.1049/iet-com.2008.0503
4.3 Error performance of short-length
SF-LDPC codes

Finally, we compare the simulated error performance of
three short-length LDPC codes. Details of the codes are
given in Table 3. The first two code types, abbreviated

Figure 6 Performance of three different types of LDPC
codes – ‘DE10’, ‘DE15’ and ‘SF20’. Code lengths are 2016,
1008 and 504 whereas the code rate is 0.5

a Bit error rate
b Block error rate
c Average number of iterations to decode a codeword (m)
1575
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Table 4 Comparison of average convergence times

SNR/code length Code type m kkvl tc ¼ m � kkvl Normalisd tc

3.6 dB/504 DE10/DE15/SF20 3.72/3.78/3.69 3.65/4.00/3.70 13.59/15.09/13.68 0.99/1.10/1.00

3.0 dB/1008 DE10/DE15/SF20 5.27/5.31/5.19 3.66/4.00/3.71 19.26/21.23/19.26 1.00/1.10/1.00

2.2 dB/2016 DE10/DE15/SF20 8.41/8.41/8.25 3.66/4.01/3.71 30.78/33.67/30.64 1.00/1.10/1.00
by ‘DE10’ and ‘DE15’, are LDPC codes of which the
degree distributions are purely optimised by the DE
algorithm [22, 23]. The third code, abbreviated by ‘SF20’,
is our proposed SF-LDPC code. The variable nodes and
the check nodes for ‘DE10’ and ‘SF20’ codes are
connected using the progressive-edge-graph (PEG)
method [24], which has been shown to produce codes
with both large girth and large Hamming distance. For
the codes denoted by ‘DE15’, we directly apply the codes
constructed in [23], which are the best-known LDPC
codes in terms of error performance that possess the
properties listed in Table 3.

Three different code lengths are used – 2016, 1008 and
504, while the code rate is kept at 0.5. The maximum
number of iterations performed to decode one codeword is
limited to 50 and the decoding process will be terminated
once the maximum number is reached. In Figs. 6a and 6b,
we plot the simulated bit error rates (BERs) and block
error rates (BLERs), respectively, for the three types of
codes under study. It can be observed that the SF-LDPC
codes ‘SF20’ provide similar BER and BLER performance
as ‘DE10’ and ‘DE15’ codes at low SNR, and outperform
them at higher SNR values. In addition, Fig. 6c depicts
that SF-LDPC codes ‘SF20’ can be decoded with a slightly
smaller number of iterations, on average, compared with
the other DE-optimised codes.

To further compare the performance of the codes, we
define the metric ‘average convergence time’, denoted by tc,
as the product of the average number of iterations to
converge (m) and the average variable-node degree (kkvl).
In general, the smaller the ‘average convergence time’, the
less time the decoder takes to decode a codeword. Table 4
shows the typical results for the ‘DE10’, ‘DE15’ and ‘SF20’
codes for the code lengths 504, 1008 and 2016. It indicates
that ‘DE10’ and ‘SF20’ have almost identical ‘average
convergence time’ whereas ‘DE15’ requires, on average,
10% more time (resources) to decode a codeword. But
recall that ‘SF20’ produces less errors than ‘DE10’ and
‘DE15’ at higher SNR values

5 Conclusion
In this paper, we have made one of the first attempts in
applying complex network theories to solving engineering
problems. In particular, we have proposed a new concept in
designing short-length LDPC codes with very good
Institution of Engineering and Technology 2009
performance. We have shown that theoretically, our
proposed SF-LDPC codes can accomplish very similar
achievable error performance (threshold) compared with
DE-optimised LDPC codes. Moreover, we have
constructed some short-length SF-LDPC codes and
simulate their error performance under an AWGN
channel. The results have shown that SF-LDPC codes
outperform other DE-optimised codes, producing lower
block/bit error rates at high SNRs. Finally, we defined a
metric to compare the average convergence times of the
various LDPC codes. We further conclude that the
convergence time of the proposed SF-LDPC codes is no
worse than those of the DE-optimised codes.
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